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Abstract. The properties of the set̂L of extended Jordanian twists are studied. It is shown
that the boundaries of̂L contain twists whose characteristics differ considerably from those of
internal points. The extension multipliers of these ‘peripheric’ twists are factorizable. This leads
to simplifications in the twisted algebra relations and helps to find the explicit form for coproducts.
The peripheric twisted algebraU(sl(4)) is obtained to illustrate the construction. It is shown that
the corresponding deformationUP (sl(4)) cannot be connected with the Drinfeld–Jimbo one by a
smooth limit procedure. All the carrier algebras for the extended and the peripheric extended twists
are proved to be Frobenius.

1. Introduction

Any Lie bialgebra has a quantum deformation [1], although there are not many cases where
it can be written in the global form. In this context explicit knowledge of the universalR-
matrix is of crucial importance. It provides the possibility of building theR-matrices in
any representation and of using the advantages of the Fadeev–Reshetikin–Takhtajan (FRT)
formalism [2]. This is why the triangular Hopf algebras and twists (they preserve the
triangularity [3,4]) play such an important role in quantum group theory and applications [5–7].
Despite these facts very few types of twists were written explicitly in a closed form. The best
known example is the Jordanian twist (JT) ofsl(2) or, more exactly, of its Borel subalgebra
B(2) ({H,E|[H,E] = 2E}) with r = H ⊗ E − E ⊗ H = H ∧ E [8] where the triangular
R-matrixR = (Fj )21F−1

j is defined by the twisting element [9,10]

Fj = exp{ 12H ⊗ ln(1 + 2ξE)}. (1.1)

In [11] it was shown that there exist different extensions (ETs) of this twist. In particular,
the ET deformation forU(sl(N)) was constructed with the explicit expressions of deformed
compositions. Using the notion of a factorizable twist [12] the elementFE ∈ U(sl(N))⊗2

FE = exp

{
2ξ

N−1∑
i=2

E1i ⊗ EiNe−σ
}

exp{H ⊗ σ } (1.2)

was proved to satisfy the twist equation, whereE = E1N , H = E11 − ENN and σ =
1
2 ln(1 + 2ξE). For simplicity of compositions the algebrasl(N) is presented above in the
standardgl(N) basis, namely{Eij }i,j=1,...,N .

† On leave of absence from: Theoretical Department, Sankt-Petersburg State University, 198904, St Petersburg,
Russia.
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The connection of the Drinfeld–Jimbo (DJ) deformation [8, 13] with the Jordanian
deformation had already been pointed out in [10]. The similarity transformation of the classical
matrix

rDJ =
rank(g)∑
i=1

tijHi ⊗Hj +
∑
α∈1+

Eα ⊗ E−α

performed by the operator exp(ξ adE1N) (with the highest root generatorE1N) turnsrDJ into
the sumrDJ + ξrj [10] where

rj = −ξ
(
H1N ∧ E1N + 2

N−1∑
k=2

E1k ∧ EkN
)
. (1.3)

Hencerj is also a classicalr-matrix and defines the corresponding deformation. A contraction
of the quantum Manin planexy = qyx of Uq(sl(2)) with the above-mentioned similarity
transformation in the fundamental representationM = 1 +θρ(E12), θ = ξ(1− q)−1 results in
the Jordanian planex ′y ′ = y ′x ′ + ξy ′2 of Uj (sl(2)) [9]. Thus, the Jordanian and the extended
Jordanian twisted algebras (with the carrier subalgebra correlated with the standard dualg∗DJ)
can be treated as a limiting case of the parameterized set of Drinfeld–Jimbo quantizations.

In this paper we study the family of carrier algebras (the term is considered to appear first
in [10]) of the typeL , i.e. the three-parametric setL = {L(α, β, γ, δ)α+β=δ} and the properties
of the corresponding setŝL of twists when the parameters tend to its limiting values (section 3).
We show that there are two cases (α → 0 andβ → 0) when the twists survive and remain
non-trivial. We call these twists peripheric extended twists (PE twists or PETs); they form the
boundary subsets of thêL variety.

The properties of the peripheric algebras differ considerably from those of the internal
points ofL. The same is true for the properties of PE twists. In contrast to the general
situation, the extension factors of PE twists are the solutions of the factorized twist equations
(see section 2). In section 4 we show howL(0, β, γ, β) or L(α, 0, γ, α) can be injected into
the simple Lie algebras and illustrate all the results for the casesl(4) ⊃ L(−1, 0, 1,−1).
The deformed coproducts thus obtained forUFP (sl(4)) are much simpler than in the case of
general ETs and the complete list of them for the generators ofsl(4) is presented. The other
significant fact is that the PE twists cannot be connected with the DJ deformations by any
kind of smooth ‘contraction’ (section 5). The solutions of the classical Yang–Baxter equation
corresponding to ETs and PETs can easily be related with the classification given by Stolin [14].
The internal points of theL variety are Frobenius algebras. On the boundary only the above
mentioned subsets{L(0, β, γ, β)} and{L(α, 0, γ, α)} are formed by Frobenius algebras. The
paper is concluded by the discussion of relations between Drinfeld-Jimbo, extended twist and
peripheric extended twist deformations.

2. Basic definitions

In this section we recall briefly the basic notions connected with the twisting procedure.
A Hopf algebraA(m,1, ε, S) with multiplicationm:A ⊗ A → A, coproduct1:A →

A⊗A, counitε:A→ C, and antipodeS : A→ A can be transformed [3] with an invertible
(twisting) elementF ∈ A ⊗ A, F = ∑

f
(1)
i ⊗ f (2)i , into a twisted oneAF (m,1F , ε, SF ).

This Hopf algebraAF has the same multiplication and counit, but the twisted coproduct and
antipode

1F (a) = F1(a)F−1 SF (a) = vS(a)v−1 (2.1)
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with

v =
∑

f
(1)
i S(f

(2)
i ) a ∈ A.

The twisting element has to satisfy the equations

(ε ⊗ id)(F) = (id ⊗ ε)(F) = 1 (2.2)

F12(1⊗ id)(F) = F23(id ⊗1)(F). (2.3)

The first is just a normalization condition, and follows from the second relation modulo a
non-zero scalar factor.

If A is a Hopf subalgebra ofB the twisting elementF satisfying (2.1)–(2.3) induces the
twist deformationBF of B. In this case one can puta ∈ B in all expressions (2.1). This will
completely define the Hopf algebraBF . LetA andB be the universal enveloping algebras:
A = U(l) ⊂ B = U(g)with l ⊂ g. If U(l) is the minimal subalgebra on whichF is completely
defined asF ∈ U(l)⊗ U(l) thenl is called the carrier algebra forF [10].

The composition of appropriate twists can be defined asF = F2F1. Here the element
F1 has to satisfy the twist equation with the coproduct of the original Hopf algebra, whileF2

must be its solution for1F1 of the one twisted byF1. In particular, ifF is a solution to the
twist equation (2.3) thenF−1 satisfies this equation with1 substituted by1F .

If the initial Hopf algebraA is quasitriangular with the universal elementR, then so is
the twisted oneAF (m,1F , ε, SF ,RF ) whose universal element is related to the initialR by
a transformation

RF = F21RF−1. (2.4)

Most of the explicitly known twisting elements have the following factorization properties
with respect to comultiplication:

(1⊗ id)(F) = F23F13 or (1⊗ id)(F) = F13F23

and

(id ⊗1)(F) = F12F13 or (id ⊗1)(F) = F13F12.

To guarantee the validity of the twist equation, these identities are to be combined with the
additional requirementF12F23 = F23F12 or the Yang–Baxter equation onF [12].

An important subclass of factorizable twists consists of elements satisfying the equations

(1⊗ id)(F) = F13F23 (2.5)

(id ⊗1F )(F) = F12F13. (2.6)

Apart from the universalR-matrixR that satisfies these equations for1F = 1op (1op = τ ◦1,
whereτ(a⊗b) = b⊗a) there are two more well developed cases of such twists: the Jordanian
twist of a Borel algebraB(2) whereFj has the form (1.1) (see [9]) withH being primitive in
B(2) andσ primitive in UFj (B(2)), and the extended Jordanian twist (see [11] for details).

It will be shown in section 3 that both sets of PE twists are not only factorizable but have
factorizable extensions. One of these extensions satisfies the ordinary factorization equations
(2.5) and (2.6), the other refers to a more sophisticated class.

According to the result of Drinfeld [4] skew (constant) solutions of the classical Yang–
Baxter equation (CYBE) can be quantized, and the deformed algebras thus obtained can be
presented in a form of twisted universal enveloping algebras. On the other hand, such solutions
of CYBE can be connected with the quasi-Frobenius carrier subalgebras of the initial classical
Lie algebra [14]. A Lie algebrag(µ), with the Lie compositionµ, is called Frobenius if
there exists a linear functionalg∗ ∈ g∗ such that the formb(g1, g2) = g∗(µ(g1, g2)) is non-
degenerate. This means thatgmust have a non-degenerate 2-coboundaryb(g1, g2) ∈ B2(g,K ).
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The algebra is called quasi-Frobenius if it has a non-degenerate 2-cocycleb(g1, g2) ∈ Z2(g,K )
(not necessarily a coboundary). The classification of quasi-Frobenius subalgebras insl(n) can
be found in [14]. In section 5 we shall show that extended and peripheric extended twists
correspond to a class of Frobenius algebras.

The deformations of quantized algebras include the deformations of their Lie bialgebras
(g, g∗). The deformation properties both ofg and ofg∗ must be taken into consideration.
When a Lie algebrag∗1(µ

∗
1) (with compositionµ∗1) is deformed to first order:

(µ∗1)t = µ∗1 + tµ∗2
its deforming functionµ∗2 is also a Lie product and the deformed property becomes reciprocal:
µ∗1 can be considered as a first-order deforming function for algebrag∗2(µ

∗
2). Let g(µ) be

a Lie algebra that form Lie bialgebras both withg∗1 and g∗2. This means that we have a
one-dimensional family{(g, (g∗1)t )} of Lie bialgebras and correspondingly a one-dimensional
family of quantum deformations{At (g, (g∗1)t )} [1]. This situation provides the possibility
to construct in the set of Hopf algebras a smooth curve connecting quantizations of the type
A(g, g∗1) with those ofA(g, g∗2). Such smooth transitions can involve contractions provided
µ∗2 ∈ B2(g∗1, g

∗
1). This happens in the case of JT, ET and some other twists (see [15] and

references therein).

3. Extended twists and their limits

In the construction of extended Jordanian twists suggested in [11] the carrier algebras of typeL
play a crucial role. These are solvable subalgebras with at least four generators. To study the
limiting properties of the ETs let us write down this carrier algebraL in the general form

[H,E] = δE [H,A] = αA [H,B] = βB
[A,B] = γE [E,A] = [E,B] = 0

(3.1)

α + β = δ. (3.2)

This parametrization does not describe the full orbit ofL , but presents the essential part of it
with the preserved general structure of Lie compositions.

In this algebra one can successively perform two non-trivial twists. The first one
corresponds to the carrier subalgebraB(2)with generatorsH andE. It is called the Jordanian
twist and has the twisting element [9]

8j = eH⊗σ (3.3)

where

σ = 1

δ
ln(1 +γE). (3.4)

This twisting element is a solution of the factorized twist equations (see equations (2.5) and
(2.6)). It transforms the Hopf algebraU(L) intoUj(L):

1j(H) = H ⊗ e−δσ + 1⊗H
1j(A) = A⊗ eασ + 1⊗ A
1j(B) = B ⊗ eβσ + 1⊗ B
1j(E) = E ⊗ eδσ + 1⊗ E.

(3.5)

The Jordanian twist (3.3) can be extended [11] by the factors

8E = eA⊗Be−βσ (3.6)
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or

8E′ = e−B⊗Ae−ασ . (3.7)

The element8E is itself a solution of the general twist equation (2.3) for the algebraUj(L).
After being twisted by8E the algebraUj(L) transforms intoUE(L) defined by

1E(H) = H ⊗ e−δσ + 1⊗H − δA⊗ Be−(β+δ)σ

1E(A) = A⊗ e−βσ + 1⊗ A
1E(B) = B ⊗ eβσ + eδσ ⊗ B
1E(E) = E ⊗ eδσ + 1⊗ E.

(3.8)

The compositions (3.1) and (3.8) with the condition (3.2) define the three-dimensional set
H of Hopf algebras. All theinternalpoints of this set correspond to the twisted algebras of the
same general structure and the same properties. To obtain relations (3.8) we can also start with
U(L) and apply to it the extended twistFE = 8E 8j (the composition of8E and8j ). Note
also that for non-zero values of parameters twists8E and8E′ being applied to algebraUj(L)
give the equivalent sets of Hopf algebrasUE(L) ≈ UE′(L). The corresponding equivalence
map is generated by the substitution(A,B, α, β)
 (B,−A, β, α).

The situation changes when we consider the boundaries of the setH. As we shall see the
peripheric Hopf algebras (when they exist) are not only inequivalent to the initial one, but in
some cases correspond to a new kind of extended twist with specific properties.

In the following five cases the results are trivial.

1. γ → 0. The Jordanian twist is trivialized. The extensions become insignificant. They
correspond to twisting by primitive elements of an abelian algebra. The carrier subalgebra is
here two-dimensional Abelian and co-Abelian.

2. δ → 0; α = −β 6= 0. In this case the divergences are inevitable in1E(A) and in
1E(B). No limiting Hopf algebras in this boundary subset.

3. δ → 0 andα → 0, γ 6= 0. In such caseβ also goes to zero. The behaviour
of these parameters can be coordinated so that the limiting Hopf algebra exists (in spite
of the divergences of the Jordanian twisting element8j . In this limit the carrier algebra
L (3) ≡ limδ,α→0 L is the central extension of Heisenberg algebra formed byA,B andE. Put
α = aδ, β = bδ (with a+b = 1) and letσ0 ≡ ln(1+γE). The coproducts of the Hopf algebra
Uq(L (3)) are defined by the relations

1q(H) = H ⊗ e−σ0 + 1⊗H
1q(A) = A⊗ eaσ0 + 1⊗ A
1q(B) = B ⊗ ebσ0 + 1⊗ B
1q(E) = E ⊗ eσ0 + 1⊗ E.

(3.9)

Only the last three relations are essential, corresponding to some special case of Heisenberg
algebra quantization. One can easily check that any group-like elementsfA, fB, f

′
A, f

′
B and

fE depending onE can serve to construct the coalgebra

1q(A) = A⊗ fA + f ′A ⊗ A
1q(B) = B ⊗ fB + f ′B ⊗ B
1q(E) = E ⊗ fE + 1⊗ E

(3.10)

that will form a Hopf algebra with the Heisenberg Lie composition [A,B] = γE in two
distinct cases:

fAfB = fE and f ′Af
′
B = 1 (3.11)
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or

fAfB = 1 and f ′Af
′
B = fE = 1 + γ̃ E. (3.12)

Thus we have two classes of quantisations of Heisenberg algebra within the scope of the
coalgebraic relations (3.10). The Hopf algebraUq(L (3)) refers to the first (withf ′A = f ′B = 1
andfE = 1 +γE). In this case the extensions

8E = eA⊗Bf −1
B (3.13)

and

8E′ = e−B⊗Af −1
A (3.14)

exist and lead to the following quantizations of Heisenberg algebra:

1q,E(A) = A⊗ f −1
B + 1⊗ A 1q,E′(A) = A⊗ fA + fE ⊗ A

1q,E(B) = B ⊗ fB + fE ⊗ B 1q,E′(B) = B ⊗ f −1
A + 1⊗ B

1q,E(E) = E ⊗ fE + 1⊗ E 1q,E(E
′) = E ⊗ fE + 1⊗ E.

(3.15)

Note that1q(H) containing only central elements is not touched by these extension twists
(the same is seen above for1q(E)). Thus the only function of the twists that survive in this
case is to bridge different classes of quantizations of Heisenberg algebras.

4. δ→ 0 andβ → 0. This is identical to case 3.
5. δ → 0 andγ → 0. In this limit the carrier algebraL (5) ≡ limδ,γ→0 L is the central

extension of the two-dimensional algebrae(2) of plane motions. For the consistent behaviour
of parameters the Jordanian twist survives in a form

8
(5)
j = eH⊗(γ /δ)E.

The corresponding deformationU(L (5))
8j−→ U(L (5)j ) amounts to a trivial quantization of

U(e(2)) by a function of the central generatorE. No additional transformations are produced
by the extensions8E or8E′ .

Note that in cases 2, 3 and 4 the carrier algebraL loses the property of being Frobenius
(see section 5 for more details).

There are two cases that provide non-trivial carrier algebras and twists:

(i) α→ 0; β = δ. Let us rewrite the corresponding carrier algebra relations:

[H,E] = δE [H,A] = 0 [H,B] = δB
[A,B] = γE [E,A] = [E,B] = 0.

(3.16)

This is the limiting element of the sequence of algebras of the type (3.1), we shall denote it
L c. It has rank 2 while all the other members of the sequence have rank 1. The twists survive
in the limit with the twisting elements

8j = eH⊗σ (3.17)

8P = eA⊗Be−βσ . (3.18)

The twisted algebraUj(L c) is the limit of the sequence of Hopf algebras defined by the
coproducts (3.5):

1j(H) = H ⊗ e−δσ + 1⊗H
1j(A) = A⊗ 1 + 1⊗ A
1j(B) = B ⊗ eδσ + 1⊗ B
1j(E) = E ⊗ eδσ + 1⊗ E.

(3.19)
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The second twisting element8P does not depend onδ and leads to the algebraUP (L c) with
the coproduct:

1P (H) = H ⊗ e−δσ + 1⊗H − δA⊗ Be−2δσ

1P (A) = A⊗ e−δσ + 1⊗ A
1P (B) = B ⊗ eδσ + eδσ ⊗ B
1P (E) = E ⊗ eδσ + 1⊗ E.

(3.20)

The significant fact is that inUP (L c) the elementBe−δσ is primitive. Together with the
primitivity of A in Uj(L c), this means that the twisting element8P is now a solution of the
factorized twist equations (2.5) and (2.6) contrary to the properties of the internal points of the
setL̂.

(ii) β → 0; α = δ. Recall that in the general situation we have two possible extensions
8E and8E′ that give equivalent results. Here the picture is different. On the boundaries ofL̂
this degeneracy is removed and we are either to check both extensions for one type of limits
or to study both limits for one of the extensions. This is the reason for considering this second
limit separately.

The purely algebraic partL ′c looks like

[H,E] = δE [H,A] = δA [H,B] = 0

[A,B] = γE [E,A] = [E,B] = 0
(3.21)

and its Jordanian twistUj(L ′c)

1j (H) = H ⊗ e−δσ + 1⊗H
1j(A) = A⊗ eδσ + 1⊗ A
1j(B) = B ⊗ 1 + 1⊗ B
1j(E) = E ⊗ eδσ + 1⊗ E

(3.22)

is still equivalent to the previous one,Uj(L c) (see equations (3.19)). The extension of the JT
has now a form that is essentially different to that of (3.18):

8P ′ = eA⊗B. (3.23)

The final peripheric Hopf algebraUP ′(L ′c) is defined by the relations

1P ′(H) = H ⊗ e−δσ + 1⊗H − δA⊗ Be−δσ
1P ′(A) = A⊗ 1 + 1⊗ A
1P ′(B) = B ⊗ 1 + eδσ ⊗ B
1P ′(E) = E ⊗ eδσ + 1⊗ E.

(3.24)

In this case the generatorB is primitive in the intermediate algebra (3.22), whileA becomes
primitive after the extended twist. Thus it does not satisfy the ordinary factorized twist
equations (2.5) and (2.6). Nevertheless, the relations valid for8P ′

(1F ⊗ id)F = F13F23

(id⊗1)F = F12F13
(3.25)

describe the solution of the general twist equation (2.3) in our case because both tensor
multipliers in 8P ′ depend each time on a single generator providing an additional
commutativity for twisting elements inH ⊗ H ⊗ H -space. (Despite the visual similarity
the equations (3.25) can not be referred to the inverse of the twisting elementF due to the
structure of the coproduct1F .)
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The universalR-matrices have the form

R = eBe−δσ⊗Aeσ⊗He−H⊗σ e−A⊗Be−δσ (3.26)

in the first case, and

R = eB⊗Aeσ⊗He−H⊗σ e−A⊗B (3.27)

in the second. In both cases the deformation parameter can be introduced by the substitution
E → ξE; A → ξA. This supplies the deformed algebra with the ordinary classical limit
whenξ → 0, and gives the possibility to write down the classicalr-matrix. It has the same
form in both cases:

r = A ∧ B +
γ

δ
H ∧ E (3.28)

(though defined for different carrier algebras (3.16) and (3.21)). Its form guarantees that in
both cases the coboundary Lie bialgebras originating from it are self-dual.

Just as in the case of the extended Jordanian twist [11], one can append any number of
similar extensions of type8P (correspondingly8P ′ ) to the initial Jordanian twist8j for any
number of pairs of equivalent eigenvectors(Am,Bm) of the adjoint operator ad(H) and with
the only non-zero commutators [Am,Bm] = γE.

4. Peripheric extended twists for simple Lie algebras—sl(4) as an example

To demonstrate some other properties of the peripheric extended twists let us apply them
to deform the universal envelopings of simple Lie algebras. The corresponding carrier
subalgebras can be found in all the simple Lie algebras with rank no lower than 2. We
shall work with the algebraU(sl(4)) in order to present a completely non-degenerate case.
The canonicalgl(4) basis{Eij ; i, j = 1, . . . ,4} will be used with commutation relations

[Eij , Ekl ] = δjkEil − δilEkj . (4.1)

We shall study the PET with the carrier algebraL ′c, which is of the second type (see
equations (3.21)). Let us injected it intosl(4) in the following way:

H = E11− E22 ≡ H12 E = E24

A = E23 B = E34.
(4.2)

This kind of injection corresponds to fixed values of the parameters

α = δ = −1 γ = 1 β = 0 (4.3)

with

σ = − ln(1 +E24). (4.4)

The universal enveloping algebraU(sl(4)) can be twisted by the PET

FP ′ = eE23⊗E34eH12⊗σ . (4.5)

The deformed algebraUP ′(sl(4)) thus obtained has comultiplications that are much less
cumbersome compared with the result of an ordinary ET (see [11]):

1P ′(H12) = H12⊗ eσ +E23⊗ E34e
σ + 1⊗H12

1P ′(H13) = H13⊗ 1 + 1⊗H13



Peripheric extended twists 4549

1P ′(H14) = H14⊗ 1 + 1⊗H14 +H12⊗ (1− eσ )− E23⊗ E34e
σ

1P ′(E12) = E12⊗ e2σ − E13⊗ E34e
2σ + 1⊗ E12 +H12⊗ E14e

σ +E23⊗ E34E14e
σ

1P ′(E13) = E13⊗ eσ + 1⊗ E13− E23⊗ E14

1P ′(E14) = E14⊗ eσ + 1⊗ E14

1P ′(E21) = E21⊗ e−2σ + 1⊗ E21

1P ′(E23) = E23⊗ 1 + 1⊗ E23

1P ′(E24) = E24⊗ e−σ + 1⊗ E24

1P ′(E31) = E31⊗ e−σ + 1⊗ E31 +E21⊗ E34e
−σ

1P ′(E32) = E32⊗ eσ + 1⊗ E32 +H13⊗ E34e
σ

1P ′(E34) = E34⊗ 1 + 1⊗ E34 +E24⊗ E34

1P ′(E41) = E41⊗ e−σ + 1⊗ E41 +E23⊗ E31−H12⊗ E21e
σ − E23⊗ E34E21e

σ

1P ′(E42) = E42⊗ eσ − E43⊗ E34e
σ +E23⊗ E32 + 1⊗ E42

−H12⊗H24e
σ +H12⊗ (e2σ − eσ )− E23⊗H24E34e

σ

+E23⊗ E34(2e
2σ − eσ ) +H 2

12⊗ (e2σ − eσ )
+ 2H12E23⊗ E34e

2σ +E2
23⊗ E2

34e
2σ −H12E23⊗ E34e

σ

1P ′(E43) = E43⊗ 1 + 1⊗ E43 +E23⊗H34−H12⊗ E23e
σ

−E23⊗ E34E23e
σ +H12E23⊗ E24e

σ − E2
23⊗ E34e

σ .

(4.6)

The following universalR-matrix corresponds to this PET deformation:

R = eξE34⊗E23eσ⊗H12e−H12⊗σ e−ξE23⊗E34. (4.7)

In this expression the deformation parameter has been introduced (see section 3), so here
σ = − ln(1 + ξE24). The corresponding classicalr-matrix looks like

r = E34∧ E23 +H12∧ E24. (4.8)

5. Peripheric twists and Drinfeld–Jimbo quantizations

It has been known for a long time that some types of Jordanian quantizations can be treated
as limiting structures for certain smooth sequences of standard deformations [9, 16, 17]. It
was proved in [15] that this property is provided by the specific correlation between the Lie
bialgebras of Drinfeld–Jimbo and ET quantizations.

Let (g, g∗DJ) and (g, g∗j ) be the Lie bialgebras corresponding to Drinfeld–Jimbo and
Jordanian quantizations ofg, respectively. Letµ, µ∗DJ andµ∗j denote the corresponding Lie
composition maps. It was demonstrated in [15] that ifµ∗j is a 2-coboundary for the Lie algebra
g∗DJ, i.e.

µ∗j ∈ B2(g∗DJ, g
∗
DJ)

then in the set of deformation quantizations ofU(g) there exists a smooth curve connecting
Uj(g) (or in the analogous conditionsUE(g)) with the standard deformationUDJ(g).
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Smoothness is defined here in the topology very similar to the power series one (see [18, 19]
for details).

It is important to know whether the algebras twisted by PETs can also be connected with
DJ quantizations, thus describing the limiting cases with respect to the standard deformations.
In the context of this problem we need the inverse of the previous statement. Let us formulate
it as follows.

Lemma 1. Let UA(g) andUA′(g) be two inequivalent quantum deformations ofU(g) and
H(p, q) be a smooth curve connecting them. If the curve has the properties:
(i) H(p, q)p=0 = UA(g) andH(p, q)q=1 = UA′(g),
(ii) H(p, q) depends analytically onq,
then the Lie maps of algebrasg∗A andg∗A′ are the cocycles of each other:

µ∗A′ ∈ Z2(g∗A, g
∗
A)

µ∗A ∈ Z2(g∗A′ , g
∗
A′).

(5.1)

Proof. The interior of the set of curves{H(p, q), q ∈ [0, q1]} forms a neighbourhoodO(g)
of U(g) (in the topology induced in the two-dimensional subsetH(p, q)). The parameters
p andq are the natural coordinates in a map covering the neighbourhoodO(g). Thus, for a
sufficiently small fixedq0 ∈ [0, q1] and any smallp the pair

(
µ , q0µ

∗
A + pµ∗A′ ≡ µ∗q0,p

)
is a

Lie bialgebra. This means thatµ∗q0,p
is the first-order deformation ofq0µ

∗
A. Butµ∗A′ itself is a

Lie algebra. So,µ∗q0,p
is also the first-order deformation ofpµ∗A′ . �

The conditions imposed in lemma 1 are natural, they correspond to the supposition
that there are no singularities in the neighbourhood ofU(g) in the set of its deformation
quantizations.

In the example we presented in section 4, the Lie mapµ∗DJ(sl(4)) of the algebra(sl(4))∗DJ
in the basis{Xik} canonically dual to{Eik} has the following non-zero commutators:

[Xii, Xkl ]k6l = δikXil − δilXki
[Xii, Xkl ]k>l = −δikXil + δilXki

[Xij ,Xkl ]i<j, k<l = 2(δjkXil − δilXkj )
[Xij ,Xkl ]i>j, k>l = −2(δjkXil − δilXkj ).

(5.2)

The Lie algebra(sl(4))∗P ′ corresponding to the PET performed by (4.5) can be extracted from
the coproducts (4.6):

[X11, X14] = X12 [X11, X21] = −X41

[X11, X22] = −X42 [X11, X24] = X22−X44

[X11, X23] = −X43 [X11, X34] = X32

[X11, X44] = X42 [X22, X21] = X41

[X22, X23] = X43 [X22, X24] = −X22 +X44

[X22, X44] = −X42 [X33, X23] = −X43

[X33, X34] = −X32 [X44, X23] = X43

[X12, X24] = −2X12 [X13, X24] = −X13

[X13, X34] = −X12 [X14, X22] = X12

[X14, X23] = X13 [X14, X24] = −X14
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[X21, X24] = 2X21 [X21, X34] = X31

[X23, X31] = X41 [X23, X32] = X42

[X23, X34] = −X22 +X44 [X24, X31] = −X31

[X24, X32] = X32 [X24, X34] = X34

[X24, X41] = −X41 [X24, X42] = X42

[X34, X43] = X42.

(5.3)

We shall denote this set of compositionsµ∗P ′(sl(4)).
One can check by direct computations that the Lie multiplicationsµ∗DJ(sl(4)) and

µ∗P ′(sl(4)) are not the first-order deformations of each other. This means (taking into account
that they are themselves the Lie compositions) that they are not the 2-cocycles of each other. So
the conditions (5.1) are not satisfied, and according to lemma 1 the Hopf algebrasUDJ(sl(4))
andUP ′(sl(4))) cannot be connected by a smooth curve. We have come to the conclusion
thatUP ′(sl(4))) cannot be obtained from the Drinfeld–Jimbo deformation ofU(sl(4)) by a
contraction or by any other smooth limiting process. This feature clearly shows how different
could be the results of quantum deformations by extended and by peripheric twists.

The facts discussed above are intimately connected with the problem of the equivalence
of different CYBE solutions, and in this context with the properties of the corresponding
quasi-Frobenius algebras. We have seen that all the algebras belonging to the setL̃ =
{L(α, δ−α, γ, δ)|γ 6= 0, δ 6= 0}are at least quasi-Frobenius. This property can be summarized
as follows.

Lemma 2. All the elements of the set̃L are Frobenius algebras.

Proof. For all the algebrasL of the set̃L the form

b(g1, g2) = E∗([g1, g2]) g1, g2 ∈ L

is non-degenerate. HereE∗ is the functional canonically dual to the basic elementE ∈ L . �
Note that our results are in total agreement with the classification of quasi-Frobenius

algebras of low dimension given by Stolin [14]. One can check that the setL̃ is equivalent to
the class{Pa1,a2,a3|a1 6= a3} (see [14, proposition 1.2.3]).

6. Conclusions

The peripheric twists described in this paper are not continuously connected with Drinfeld–
Jimbo deformations despite the fact that the carrier subalgebras of the peripheric and ordinary
extended twists belong to the same smooth family of Frobenius algebras. Taking into account
that theUE(sl(n))algebra quantized by certain types of ET can be treated as the continuous limit
of DJ deformations [15], we have at least the superposition of two smooth transitions that can
connect DJ and PET deformations. In the case studied above the algebraL(α, 0, γ, δ) ⊂ sl(4)
can be obtained fromL(1, 1, 1, 2) ⊂ sl(3) ⊂ sl(4) by means of a ‘rotation’ in the space of
the Cartan subalgebra ofsl(4). We want to stress that the ‘rotation’ connectingL(1, 1, 1, 2)
with L(−1, 0, 1,−1) is not a similarity transformation forL and thus cannot be used to carry
properties from the ET to the PET and vice versa. Nevertheless, it might also be possible to
simulate analogous ‘rotations’ in the set of modified DJ deformations (using multiparametric
quantizations or applying the continuous families of dual groups [20]). If both ‘rotations’
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could be matched the possibility of a contraction-like smooth transition between modified DJ
and PET deformations might exist.
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