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Abstract. The properties of the set of extended Jordanian twists are studied. It is shown
that the boundaries of contain twists whose characteristics differ considerably from those of
internal points. The extension multipliers of these ‘peripheric’ twists are factorizable. This leads
to simplifications in the twisted algebra relations and helps to find the explicit form for coproducts.
The peripheric twisted algebia(s/ (4)) is obtained to illustrate the construction. It is shown that
the corresponding deformatidny (s/(4)) cannot be connected with the Drinfeld—Jimbo one by a
smooth limit procedure. All the carrier algebras for the extended and the peripheric extended twists
are proved to be Frobenius.

1. Introduction

Any Lie bialgebra has a quantum deformation [1], although there are not many cases where
it can be written in the global form. In this context explicit knowledge of the univeRsal

matrix is of crucial importance. It provides the possibility of building tRematrices in

any representation and of using the advantages of the Fadeev—Reshetikin—Takhtajan (FRT)
formalism [2]. This is why the triangular Hopf algebras and twists (they preserve the
triangularity [3,4]) play such animportant role in quantum group theory and applications [5-7].
Despite these facts very few types of twists were written explicitly in a closed form. The best
known example is the Jordanian twist (JT)s&f2) or, more exactly, of its Borel subalgebra

B(2) ({H,E|[H,E]l =2E})withr = H® E— E® H = H A E [8] where the triangular
R-matrixR = (]-‘,-)21}71 is defined by the twisting element [9, 10]

Fj=exp3H®In(1+%E)}. (1.1)

In [11] it was shown that there exist different extensions (ETs) of this twist. In particular,
the ET deformation fot/(sl(N)) was constructed with the explicit expressions of deformed
compositions. Using the notion of a factorizable twist [12] the elen@nE U (sI(N))®?

N-1

FE =exp{2§ZE1,- ®EiN€0}eXHH®O'} (12)

i=2
was proved to satisfy the twist equation, whéte= Eiy, H = E1; — Eyy ando =
%In(l + 2 F). For simplicity of compositions the algebs& N) is presented above in the
standarcg/(N) basis, namelyE;;}; j=1,.. n.

yeeey

T On leave of absence from: Theoretical Department, Sankt-Petersburg State University, 198904, St Petersburg,
Russia.
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The connection of the Drinfeld—Jimbo (DJ) deformation [8, 13] with the Jordanian
deformation had already been pointed outin[10]. The similarity transformation of the classical
matrix

rank(g)
rpy = Z iiH; @ H; + Z E,.QE_,
i=1 aeA,

performed by the operator e{gad E1y) (with the highest root generatdi; v ) turnsrp; into
the sunvp; + &r; [10] where

N—-1

rp = —& (HlN N En + ZZ Eu N EkN) . (13)
k=2

Hencer; is also a classicalmatrix and defines the corresponding deformation. A contraction

of the quantum Manin planey = gyx of U, (sl(2)) with the above-mentioned similarity

transformation in the fundamental representatibe= 1 +6p(E1,), 0 = £(1—¢g)~* results in

the Jordanian plan€y’ = y'x’ + gy'? of U;j(sl(2)) [9]. Thus, the Jordanian and the extended

Jordanian twisted algebras (with the carrier subalgebra correlated with the standayg;plual

can be treated as a limiting case of the parameterized set of Drinfeld—Jimbo quantizations.

In this paper we study the family of carrier algebras (the term is considered to appear first
in [10]) of the typeL, i.e. the three-parametric sét= {L («, B, v, §)«+p=s} and the properties
of the corresponding sefSof twists when the parameters tend to its limiting values (section 3).
We show that there are two cases{ 0 ands — 0) when the twists survive and remain
non-trivial. We call these twists peripheric extended twists (PE twists or PETSs); they form the
boundary subsets of th?‘—:variety.

The properties of the peripheric algebras differ considerably from those of the internal
points of £. The same is true for the properties of PE twists. In contrast to the general
situation, the extension factors of PE twists are the solutions of the factorized twist equations
(see section 2). In section 4 we show hbd, 8, v, 8) or L («, O, y, @) can be injected into
the simple Lie algebras and illustrate all the results for the ¢age > L(—1,0,1, —1).

The deformed coproducts thus obtained &y, (s/(4)) are much simpler than in the case of
general ETs and the complete list of them for the generatar& 4 is presented. The other
significant fact is that the PE twists cannot be connected with the DJ deformations by any
kind of smooth ‘contraction’ (section 5). The solutions of the classical Yang—Baxter equation
corresponding to ETs and PETs can easily be related with the classification given by Stolin [14].
The internal points of th& variety are Frobenius algebras. On the boundary only the above
mentioned subsets (0, 8, v, 8)} and{L («, O, y, )} are formed by Frobenius algebras. The
paper is concluded by the discussion of relations between Drinfeld-Jimbo, extended twist and
peripheric extended twist deformations.

2. Basic definitions

In this section we recall briefly the basic notions connected with the twisting procedure.

A Hopf algebrad(m, A, €, S) with multiplicationm: A ® A — A, coproductA: A —
A® A, counite: A — C, and antipodes : A — A can be transformed [3] with an invertible
(twisting) elementF € A® A, F = Y. P ® £?, into a twisted oneds(m, Ax, €, Sx).
This Hopf algebrad » has the same multiplication and counit, but the twisted coproduct and
antipode

Ar(a) = FA@)F L Sr(a) = vS(a)v? (2.1)
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with
v="> fPS(?) ae A

The twisting element has to satisfy the equations
(e®id)(F)=(d®e)(F)=1 (2.2)
F12(A Q@ id)(F) = Fas(id @ A)(F). (2.3)

The first is just a normalization condition, and follows from the second relation modulo a
non-zero scalar factor.

If Ais a Hopf subalgebra df the twisting elemenf satisfying (2.1)—(2.3) induces the
twist deformationB of B. In this case one can pute B in all expressions (2.1). This will
completely define the Hopf algebts-. Let.A andB be the universal enveloping algebras:
A=U) c B=U(g)with[ C g. If U(l) isthe minimal subalgebra on whighis completely
defined asF € U(l) ® U(I) thenlis called the carrier algebra far [10].

The composition of appropriate twists can be definedras F,F;. Here the element
F1 has to satisfy the twist equation with the coproduct of the original Hopf algebra, While
must be its solution fon r, of the one twisted byF;. In particular, if 7 is a solution to the
twist equation (2.3) therf ! satisfies this equation with substituted byA £.

If the initial Hopf algebraA is quasitriangular with the universal elemét then so is
the twisted onedr(m, Ar, €, Sr, Rr) whose universal element is related to the iniftaby
a transformation

Rr=FnRF L (2.4)

Most of the explicitly known twisting elements have the following factorization properties
with respect to comultiplication:

(A ®id)(F) = FozF13 or (A®id)(F) = FizFos
and
(id ® A)(F) = FioF13 or (id @ A)(F) = FraFro.

To guarantee the validity of the twist equation, these identities are to be combined with the
additional requiremertE,Fo3 = Fo3F12 OF the Yang—Baxter equation gR[12].
An important subclass of factorizable twists consists of elements satisfying the equations

(A ®id)(F) = Fia3F2s (2.5)
(id ® Ar)(F) = FiaF1s. (2.6)

Apart from the universak-matrix R that satisfies these equationsfor = A%? (A? = toA,
wherer (¢ ® b) = b®a) there are two more well developed cases of such twists: the Jordanian
twist of a Borel algebra(2) whereF; has the form (1.1) (see [9]) witH being primitive in

B(2) ando primitive iniz, (B(2)), and the extended Jordanian twist (see [11] for details).

It will be shown in section 3 that both sets of PE twists are not only factorizable but have
factorizable extensions. One of these extensions satisfies the ordinary factorization equations
(2.5) and (2.6), the other refers to a more sophisticated class.

According to the result of Drinfeld [4] skew (constant) solutions of the classical Yang—
Baxter equation (CYBE) can be quantized, and the deformed algebras thus obtained can be
presented in a form of twisted universal enveloping algebras. On the other hand, such solutions
of CYBE can be connected with the quasi-Frobenius carrier subalgebras of the initial classical
Lie algebra [14]. A Lie algebra(u), with the Lie compositionu, is called Frobenius if
there exists a linear functiongt € g* such that the fornb(g1, g2) = g*(u(g1, g2)) is non-
degenerate. This means thanust have a non-degenerate 2-coboundégy, g») € B%(g, K).
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The algebrais called quasi-Frobenius if it has a non-degenerate 2-cbygcle,) € Z%(g, K)
(not necessarily a coboundary). The classification of quasi-Frobenius subalgelifas dan
be found in [14]. In section 5 we shall show that extended and peripheric extended twists
correspond to a class of Frobenius algebras.

The deformations of quantized algebras include the deformations of their Lie bialgebras
(g, g%). The deformation properties both gfand of g* must be taken into consideration.
When a Lie algebrg] () (with compositionu}) is deformed to first order:

(U)) = uy+1ps

its deforming functionu} is also a Lie product and the deformed property becomes reciprocal:
w; can be considered as a first-order deforming function for algghyas). Let g(u) be
a Lie algebra that form Lie bialgebras both wigh and g5. This means that we have a
one-dimensional family(g, (g7),)} of Lie bialgebras and correspondingly a one-dimensional
family of quantum deformation§4, (g, (g7):)} [1]. This situation provides the possibility
to construct in the set of Hopf algebras a smooth curve connecting quantizations of the type
A(g, g;) with those ofA(g, g3). Such smooth transitions can involve contractions provided
us € Bz(gj, g;). This happens in the case of JT, ET and some other twists (see [15] and
references therein).

3. Extended twists and their limits

In the construction of extended Jordanian twists suggested in [11] the carrier algebrad of type
play a crucial role. These are solvable subalgebras with at least four generators. To study the
limiting properties of the ETs let us write down this carrier algdbiia the general form

[H, E] =$E [H, A] = aA [H,B] = BB -
[A,B] =yE [E,A] =[E,B] =0 3.1
arp =2 3.2)

This parametrization does not describe the full orbit pbut presents the essential part of it
with the preserved general structure of Lie compositions.

In this algebra one can successively perform two non-trivial twists. The first one
corresponds to the carrier subalgeBi@) with generatorg? andE. Itis called the Jordanian
twist and has the twisting element [9]

o, =M (3.3)
where
o= %In(1+yE). (3.4)
This twisting element is a solution of the factorized twist equations (see equations (2.5) and
(2.6)). It transforms the Hopf algebta(L ) into U; (L ):
Aj(H)=H®e " +1Q H
Aj(A)=A®e +1® A
Aj(By=B®e? +1Q B
AJE)=E®e” +1QE.
The Jordanian twist (3.3) can be extended [11] by the factors
O = eA®B” (3.6)

(3.5)
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or
Oy = ¢ BOATT (3.7)

The elementb is itself a solution of the general twist equation (2.3) for the algébra.).
After being twisted byd s the algebral; (L) transforms intdJ/g (L) defined by

Ap(H)=H®e % +1® H—§A @ Be F*)0
Ap(A)=A®e P +1® A

Ap(B)=B®e +e° @ B
Ap(E)=E®e” +1QE.

The compositions (3.1) and (3.8) with the condition (3.2) define the three-dimensional set
‘H of Hopf algebras. All thénternalpoints of this set correspond to the twisted algebras of the
same general structure and the same properties. To obtain relations (3.8) we can also start with
U (L) and apply to it the extended twigy = & ®; (the composition ofb; and®;). Note
also that for non-zero values of parameters twistsand® ;- being applied to algebré; (L)
give the equivalent sets of Hopf algebiids(L) ~ Ug/(L). The corresponding equivalence
map is generated by the substitutioh, B, «, 8) = (B, —A, B, o).

The situation changes when we consider the boundaries of ti& #&t we shall see the
peripheric Hopf algebras (when they exist) are not only inequivalent to the initial one, but in
some cases correspond to a new kind of extended twist with specific properties.

In the following five cases the results are trivial.

(3.8)

1.y — 0. TheJordaniantwististrivialized. The extensions become insignificant. They
correspond to twisting by primitive elements of an abelian algebra. The carrier subalgebra is
here two-dimensional Abelian and co-Abelian.

2.8 —> 0; a = —B # 0. Inthis case the divergences are inevitablég(A) and in
Ag(B). No limiting Hopf algebras in this boundary subset.

3. § > 0andae — 0,y # 0. In such case8 also goes to zero. The behaviour
of these parameters can be coordinated so that the limiting Hopf algebra exists (in spite
of the divergences of the Jordanian twisting elemé&nt In this limit the carrier algebra
L® =lim;,_oL is the central extension of Heisenberg algebra formed b andE. Put
a=aé,f =bs (witha+b = 1)andletsg = In(1+y E). The coproducts of the Hopf algebra
U, (L®) are defined by the relations

AjH)Y=H®e™+1 H
AJ(A)=AQe“P+1R A
A,B)=B®e"+1® B
AJE)=E®e+1QE.

Only the last three relations are essential, corresponding to some special case of Heisenberg
algebra quantization. One can easily check that any group-like elenignfs, f;, fz and
f& depending orE can serve to construct the coalgebra

AJ(A)=AQR fa+ L ®A
AJB)=B® fz+ [, ®B (3.10)
A(E)=EQ® fe +1QE

that will form a Hopf algebra with the Heisenberg Lie compositioh, B] = y E in two
distinct cases:

fafe = fE and fafs=1 (3.11)

(3.9)
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or
Thus we have two classes of quantisations of Heisenberg algebra within the scope of the

coalgebraic relations (3.10). The Hopf algebiaL @) refers to the first (withf}, = f; =1
and fr = 1 +y E). In this case the extensions

Dy = OB (3.13)
and

By = e BOALLT (3.14)
exist and lead to the following quantizations of Heisenberg algebra:

Age(A)=A® f +1® A App(A)=AQ® fa+fr®A

Aye(B)=B® fp+ fr ®B Ayp(B)=B® fit+1®B  (3.15)

NE(E)=EQ® fE+1QFE A p(EY=EQ fp+1Q®E.

Note thatA,(H) containing only central elements is not touched by these extension twists
(the same is seen above fay, (E)). Thus the only function of the twists that survive in this
case is to bridge different classes of quantizations of Heisenberg algebras.

4.5 — 0andg — 0. Thisisidentical to case 3.

5.8 — 0andy — 0. In this limit the carrier algebra® = lim; , oL is the central
extension of the two-dimensional algeler@) of plane motions. For the consistent behaviour
of parameters the Jordanian twist survives in a form

O = (HOVE,

. . D; .. . .
The corresponding deformatidii(L ®) —> U(LE,S)) amounts to a trivial quantization of
U (e(2)) by a function of the central generatBr No additional transformations are produced
by the extension® or & ..

Note that in cases 2, 3 and 4 the carrier algebtases the property of being Frobenius
(see section 5 for more details).
There are two cases that provide non-trivial carrier algebras and twists:

(i)« — 0, B =4. Letus rewrite the corresponding carrier algebra relations:
[H, E] =E [H,A]=0 [H, B] =8B
[A,B] = yE [E, Al =[E, B] =0.

This is the limiting element of the sequence of algebras of the type (3.1), we shall denote it
L. It has rank 2 while all the other members of the sequence have rank 1. The twists survive
in the limit with the twisting elements

;= e®” (3.17)

Op = APBT (3.18)

The twisted algebrd/;(L¢) is the limit of the sequence of Hopf algebras defined by the
coproducts (3.5):

Aj(H)=H®e " +1Q H
Aj(A)=AR1+1® A
A;j(B)=B®e*“ +1® B
AJ(E)y=E®e” +1QE.

(3.16)

(3.19)
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The second twisting elemert, does not depend ahand leads to the algebtay (L) with
the coproduct:

Ap(H)=HQ®e  +1Q H—8A® Be %°
Ap(A)=A®e " +1Q A
Ap(B)=B®e* +¢ @ B
Ap(E)=E®7+1QE.

(3.20)

The significant fact is that i/p(L¢) the elementBe =7 is primitive. Together with the
primitivity of A in U;(L¢), this means that the twisting elemeh} is now a solution of the
factorized twist equations (2.5) and (2.6) contrary to the properties of the internal points of the
setL.

(i) B — 0, « = 6. Recallthatinthe general situation we have two possible extensions
& and®d g that give equivalent results. Here the picture is different. On the boundaries of
this degeneracy is removed and we are either to check both extensions for one type of limits
or to study both limits for one of the extensions. This is the reason for considering this second
limit separately.

The purely algebraic patt’ looks like

[H, E] = E [H, A] = §A [H,B] =0

(3.21)
[A,B]=yE [E,A]=[E,B]=0
and its Jordanian twidf; (L")
Aj(H)=H®e +1® H
A(A)=AQRe7+1Q A
i) (3.22)

Aj(B)y=B®1+1®B
AJE)=E®e" +1QE

is still equivalent to the previous on&, (L) (see equations (3.19)). The extension of the JT
has now a form that is essentially different to that of (3.18):

Bp = OB, (3.23)
The final peripheric Hopf algebi@, (L) is defined by the relations

Ap(H)=H® e +1Q H — A Q® Be %

Ap(A)=A®1+1Q A

Ap(B)=B®1+e” @B

Ap(E)=E®e“+1QE.

In this case the generat®ris primitive in the intermediate algebra (3.22), whilebecomes
primitive after the extended twist. Thus it does not satisfy the ordinary factorized twist
equations (2.5) and (2.6). Nevertheless, the relations valid for

(Ar @ Id)F = Fi13Fo3

(Id®A)YF = FioF13
describe the solution of the general twist equation (2.3) in our case because both tensor
multipliers in ®p, depend each time on a single generator providing an additional
commutativity for twisting elements it ® H ® H-space. (Despite the visual similarity

the equations (3.25) can not be referred to the inverse of the twisting elefmeume to the
structure of the coproduat £.)

(3.24)

(3.25)
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The universaiR-matrices have the form

—s0 _ _ —s0
R = eBe ®Aea®He H®l7e A®Be (326)

in the first case, and
R = ¢B®Aeo®H p=H®0 ,—ASE (3.27)

in the second. In both cases the deformation parameter can be introduced by the substitution
E — £E; A — £A. This supplies the deformed algebra with the ordinary classical limit
whené — 0, and gives the possibility to write down the classicahatrix. It has the same

form in both cases:

r=A/\B+%H/\E (3.28)

(though defined for different carrier algebras (3.16) and (3.21)). Its form guarantees that in
both cases the coboundary Lie bialgebras originating from it are self-dual.

Just as in the case of the extended Jordanian twist [11], one can append any number of
similar extensions of typé p (correspondinglyd »/) to the initial Jordanian twispb; for any
number of pairs of equivalent eigenvectors,, B,,) of the adjoint operator gd/) and with
the only non-zero commutatord |, B,,] = y E.

4. Peripheric extended twists for simple Lie algebras—si(4) as an example

To demonstrate some other properties of the peripheric extended twists let us apply them
to deform the universal envelopings of simple Lie algebras. The corresponding carrier
subalgebras can be found in all the simple Lie algebras with rank no lower than 2. We
shall work with the algebrd/ (s/(4)) in order to present a completely non-degenerate case.
The canonicatl(4) basis{E;;; i, j =1, ..., 4} will be used with commutation relations

[Eij, Ex] = 8k Ey — 8i1 Eyj. 4.1)
We shall study the PET with the carrier algelir&, which is of the second type (see
equations (3.21)). Let us injected it init(4) in the following way:

H = FE11 — Exp= Hrp E =Ey

A=Eg B = Ea. (4.2)
This kind of injection corresponds to fixed values of the parameters

a=8=-1 y=1 g=0 (4.3)
with

o =—In(1+Ey). (4.4)
The universal enveloping algebt&(s/(4)) can be twisted by the PET

Fpr = eFn®Fupta®o, (4.5)

The deformed algebr&/p (si(4)) thus obtained has comultiplications that are much less
cumbersome compared with the result of an ordinary ET (see [11]):

Ap(Hi2) = Hi2® €” + E23® E3se® +1® Hao
Ap(Hi3) = H3®1+1® His
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Ap(Hia) = Ha®1+1Q Hia+ Ho® (L —€°) — Exz @ Ezse’
Ap(E1) = E1p® €% — E13® E34¢” +1® E12+ H12 ® E14¢” + E23® EzaEr4¢”
Ap(E13) = E130 ¢ +1Q® E13— E23Q E1a
Ap(E12) = E1a®¢° +1® E1s
Ap(Ex) =En®e ¥ +1® En
Ap(E2) = Ex3®1+1Q Ex3
Ap(Eos) =FEos®e™” +1® Ezs
Ap(E3z) =E51®e °+1Q® Egq1+ E21 @ Egge™®
Ap(Ez) = Ez2® ¢® +1Q Ezp+ Hi3 ® Egae’
Ap(E3s) = E34®@1+1Q Ezp+ Eoa® Ezg
Ap(Es) =En®e  +1Q Es+ Exz® Ez; — Hip ® Ep1e” — Eo3® EgaEe’
Ap(Es) = Exa®@¢€° — Eqz® E31¢” + E23 Q@ E32+1Q® Es
— Hio ® Hpge” + Hip ® (6% — €°) — Ep3 ® HosEase”
+ Ep3 ® E34(2e% — %) + HS, ® (¢ — ¢°)
+2H12E 23 ® E34e” + E3, @ E2,6%° — HipE23 ® E34¢°
Ap(Ea3) = Eqz®1+1Q® Egz+ Ez3® Hszs — Hip ® Epze’
— Ex3® E3qEz3¢” + Hi2E23 ® Ep4e” — E33 @ Egge”.

(4.6)
The following universaiR-matrix corresponds to this PET deformation:
R = 5 Esa®E23,0@H12 ,—H1200 ,~§ E23®E3 (4_7)
In this expression the deformation parameter has been introduced (see section 3), so here
o = —In(1 +£ Ey4). The corresponding classicamatrix looks like
r = E3s A Exz+ Hio A Epg. (4.8)

5. Peripheric twists and Drinfeld—Jimbo quantizations

It has been known for a long time that some types of Jordanian quantizations can be treated
as limiting structures for certain smooth sequences of standard deformations [9, 16, 17]. It
was proved in [15] that this property is provided by the specific correlation between the Lie
bialgebras of Drinfeld—Jimbo and ET quantizations.

Let (g, gpy) and (g, g;) be the Lie bialgebras corresponding to Drinfeld—Jimbo and
Jordanian quantizations gf respectively. Lej, up;andy denote the corresponding Lie
composition maps. It was demonstrated in [15] that;ifs a 2-coboundary for the Lie algebra

gpy i.e.

W € BA(ghy ap)
then in the set of deformation quantizationsldfg) there exists a smooth curve connecting
Uj(g) (or in the analogous condition&z(g)) with the standard deformatio®p;(g).
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Smoothness is defined here in the topology very similar to the power series one (see [18,19]
for details).

Itis important to know whether the algebras twisted by PETs can also be connected with
DJ quantizations, thus describing the limiting cases with respect to the standard deformations.
In the context of this problem we need the inverse of the previous statement. Let us formulate
it as follows.

Lemma 1. Let U,(g) and U4 (g) be two inequivalent quantum deformationstofg) and
H(p, q) be a smooth curve connecting them. If the curve has the properties:
() H(p, @) p=0 = Ua(g) andH(p, ¢)y=1 = Ua(g),
(i) H(p, q) depends analytically oq,
then the Lie maps of algebrag andg’, are the cocycles of each other:
Wy € Zj(gi, g 5.0)
Wy € Z9gy» 84)-
Proof. The interior of the set of curve$i(p, q), ¢ € [0, ¢1]} forms a neighbourhoo®(g)
of U(g) (in the topology induced in the two-dimensional sub&€p, ¢)). The parameters
p andq are the natural coordinates in a map covering the neighbourfdggd Thus, for a
sufficiently small fixedyo € [0, g1] and any smalp the pair(u oy + put, = “Zo.p) isa
Lie bialgebra. This means thaf, , is the first-order deformation @b, . Butw), itself is a
Lie algebra. Soy; , is also the first-order deformation pf. . a

The conditions imposed in lemma 1 are natural, they correspond to the supposition
that there are no singularities in the neighbourhood/@§) in the set of its deformation
quantizations.

In the example we presented in section 4, the Lie mgyis/(4)) of the algebrasi(4))};
in the basiq X;,} canonically dual td E;;} has the following non-zero commutators:

[Xii, Xulest = 8ix Xt — 8ir X

[Xii, Xeilksr = =8 Xir + 81 X

[Xij, Xulicjkat = 2086 Xis — 81 Xyj)
[Xij, Xutlisj kst = =208k Xir — i Xx;j).

The Lie algebrdasi(4))%, corresponding to the PET performed by (4.5) can be extracted from
the coproducts (4.6):

(5.2)

[X11, X14] = X212 [X11, Xo1] = —Xa1

[X11, X22] = — X212 [X11, X24] = X220 — Xua
[X11, X23] = —Xa3 [X11, X34] = X32

[X11, Xa4] = X4 [X22, X21] = Xaa

[X22, X23] = Xa3 [X22, Xo4] = — X220+ Xaa
[X22, X44] = —Xa2 [X33, X23] = —Xa3

[X33, X34] = —X32 [Xas, X23] = Xa3

[X12, X24] = —2X12 [X13, X24] = —X13

[X13, X34] = —X12 [X14, X22] = X12

[

X14, X23] = X13 [X14, Xo4] = —X14
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[X21, X24] = 2X21 [X21, X34] = X31
[X23, X31] = Xa1 [X23, X32] = Xa2
[X23, X34] = —X22+ Xaa [X24, X31] = —X31
[X24, X32] = X32 [X24, X34] = X34
[X24, Xa1] = —Xa1 [X24, X42] = X42

[X34, Xa3] = Xao.
(5.3)

We shall denote this set of composition$, (s/(4)).

One can check by direct computations that the Lie multiplicatipfis(s/(4)) and
Wi (sl(4)) are not the first-order deformations of each other. This means (taking into account
that they are themselves the Lie compositions) that they are not the 2-cocycles of each other. So
the conditions (5.1) are not satisfied, and according to lemma 1 the Hopf aldéhas(4))
and Up (sl(4))) cannot be connected by a smooth curve. We have come to the conclusion
that Up/(s1(4))) cannot be obtained from the Drinfeld—Jimbo deformatioefi/(4)) by a
contraction or by any other smooth limiting process. This feature clearly shows how different
could be the results of quantum deformations by extended and by peripheric twists.

The facts discussed above are intimately connected with the problem of the equivalence
of different CYBE solutions, and in this context with the properties of the corresponding
quasi-Frobenius algebras. We have seen that all the algebras belonging to the=set
{L(a,8—0ax, y,8)|y # 0,68 # 0} are atleast quasi-Frobenius. This property can be summarized
as follows.

Lemma 2. All the elements of the sgtare Frobenius algebras.

Proof. For all the algebrak of the set’ the form

b(g1, g2) = E*([81, g2]) 81,8 €L
is non-degenerate. Hefg* is the functional canonically dual to the basic elemént L. [J

Note that our results are in total agreement with the classification of quasi-Frobenius
algebras of low dimension given by Stolin [14]. One can check that thé se¢quivalent to
the clasq P,, 4,.4;la1 # as} (see [14, proposition 1.2.3]).

6. Conclusions

The peripheric twists described in this paper are not continuously connected with Drinfeld—
Jimbo deformations despite the fact that the carrier subalgebras of the peripheric and ordinary
extended twists belong to the same smooth family of Frobenius algebras. Taking into account
thattheUg (sl (n)) algebra quantized by certain types of ET can be treated as the continuous limit
of DJ deformations [15], we have at least the superposition of two smooth transitions that can
connect DJ and PET deformations. In the case studied above the dlgebfay, §) C si(4)

can be obtained frorh (1, 1, 1, 2) C s1(3) C sl(4) by means of a ‘rotation’ in the space of

the Cartan subalgebra of(4). We want to stress that the ‘rotation’ connectingl, 1, 1, 2)

with L (-1, 0, 1, —1) is not a similarity transformation fdr and thus cannot be used to carry
properties from the ET to the PET and vice versa. Nevertheless, it might also be possible to
simulate analogous ‘rotations’ in the set of modified DJ deformations (using multiparametric
gquantizations or applying the continuous families of dual groups [20]). If both ‘rotations’
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could be matched the possibility of a contraction-like smooth transition between modified DJ
and PET deformations might exist.
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